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Error-correcting codes and image restoration with multiple stages of dynamics
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We consider the problems of error-correcting codes and image restoration with multiple stages of dynamics.
Information extracted from the former stage can be used selectively to improve the performance of the latter
one. Analytic results were derived for the mean-field systems using the cavity method. We find that it has the
advantage of being tolerant to uncertainties in hyperparameter estimation, as confirmed by simulations.
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[. INTRODUCTION these values correspond to the Nishimori point in the space
of hyperparameter§6]. This is equivalent to a thermody-
The corruption of signals by noise is a common problemnamic process at finite temperature, and the task performance
encountered in information processing. To retrieve signalss better than the maximura posteriori probability (MAP)
from messages corrupted during the transmission throughmethod, where the values of the hyperparameters are taken to
noisy channels, various error-correcting codes have beenfinity, equivalent to a zero temperature process. Further-
proposed 1]. In particular, the error-correction mechanism more, from the analytic solution of the infinite-range model
of a class of parity-checking codes can be considered as and the Monte Carlo simulation of finite-dimensional mod-
search for thermodynamically stable states of a Hamiltoniarls, it was shown that an inappropriate choice of the hyper-
constructed in terms of the message hR% These codes parameters can lead to a rapid degradation of the tasks.
have been demonstrated to saturate the Shannon information In fact, hyperparameter estimation has been the subject of
bound in the limit that each encoded bit checks the parity ofnany previous studiel¥’], a recently popular one using the
an infinitely large number of message bjs3]. While in  “evidence framework[8]. However, if the prior models the
practice, each encoded bit can only check the parity of source poorly, no hyperparameters can be relig®leEven
finite number of message bits, these codes still maintain d they can be estimated accurately through steady-state sta-
very low bit error probability. tistical measurements, they may fluctuate when interfered
The need to retrieve signals from corrupted messages igith by bursty noise sources in communication channels.
also inherent in image restoratigd]. Although parity- Hence it is important to devise decoding or restoration pro-
checking bits may not be explicitly introduced for the task,cedures which are robust against the uncertainties in hyper-
prior knowledge about the images plays a similar role. Foiparameter estimation.
example, the smoothness of real-world images provides a In this paper we propose the technique of selective freez-
mechanism for checking the pixel values in comparison withng as a method to increase the tolerance to uncertainties in
those of their neighbors. A corresponding Hamiltonian, con-hyperparameter estimation. The technique has been studied
sisting of a ferromagnetic bias to reflect the smootheningor pattern reconstruction in neural networks, where it led to
tendency, can be constructed in terms of the image pixelsin improvement in the retrieval precision, a widening of the
Modern techniques of image restoration based on Markobasin of attraction, and a boost in the storage capatidy.
random fields correspond to the search for thermodynamithe idea is best illustrated for Ising bits or pixels with binary
cally stable states of the Hamiltonian system, using methodstates* 1, though it can be easily generalized to other cases.
such as simulated annealifdj. In a finite temperature thermodynamic process, the lIsing
In a recent paper, we showed that the problems of errorvariables keep moving under thermal agitation. Some of
correcting codes and image restoration can be formulated ithem have smaller thermal fluctuations than the others, im-
a unified framework[5]. In both tasks, the choice of the plying that they are more certain to stay in one state than the
so-called hyperparameters is an important factor in determinether. This stability implies that they have a higher probabil-
ing their performances. Hyperparameters refer to the coeffity to stay in the correct state for error-correction or image
cients of the various interactions appearing in the Hamilrestoration tasks, even when the hyperparameters are not op-
tonian of the tasks. In error correction, they determine thdimally tuned. It may thus be interesting to separate the ther-
statistical significance given to the parity-checking terms ananodynamic process into two stages. In the first stage we
the received bits. Similarly in image restoration, they deterselect those relatively stable bits or pixels whose time-
mine the statistical weights given to the prior knowledge andaveraged states have a magnitude exceeding a certain thresh-
the received data. It was shown, by the use of inequalitiesyld. In the second stage we subsequentlydixfreezé them
that the optimal choice of the hyperparameters correspond tim the most probable thermodynamic statés Ising vari-
the maximum posterior marginal method, where there is ables this corresponds to the sign of the time-averaged state
match between the source and model priors. The choice dfhus these selectively frozen bits or pixels are able to pro-
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vide a more robust assistance to the less stable bits or pixethosen sets of of indice,, ... iy}, the choice of which

in their search for the most probable states. The selectivdetermines the type of code. Each spin may appear in a num-

freezing procedure reduces to the usual finite-temperaturger of p-spin codewords; the number of times of appearance

decoding or restoration process if all bits or pixels are frozens called the valency,. The Sourlas codE2] is equivalent

(since nothing happens in the second stage no bits or o the infinite-range model, in which all possible codewords

pixels are frozerisince the second stage is merely a continu-of y spins are chosen from spins. On the other hand, the

ation of the equilibration process of the first stage _ Kabashima-Saad cod8] consists of combinations in which
The two-stage thermodynamic process can be studied,qp, gpin appears in a random preselection, @odewords.

anglyﬂca}ly in the mean-ﬁleld model, wh|c'h prowdes a quall'For conventional image restoration, codewords with gnly

tative guide to the behavior of more realistic cases of lower_ transmitted, corresponding to the pixels in the image;

dimensions. However, it is necessary to make a remark abo te inclusion of terms witp>1, and their positive effects

the theoretical approach. That is, as far as we have tried, th . L ' . .

analytical solution has been inaccessible by the more co pn restorlng thg original Image, were also discussed in Ref.

ventional replica method. Rather, we have to use the cavity? FOr simplicity, we restrict ourselves to the case of a

method to obtain the equations for the order parameters. [RNd!e nonvanishing value gf with p=2, andp=1.

particular, the cavity method leads to the appearance of a When the signal is transmitted through a noisy channel,

term called the trans-susceptibility, which correctly describeghe output consists of the seft3; ... } and{r}, which are

the effects of the thermodynamics of the first stage on that ofhe corrupted versions dfi° ; } and{¢;} respectively. In

the second. toP
The paper is organized as follows. In Sec. Il we briefly . .

review the formulation of error-correcting codes and imagg® *Ji,...i, With probabilitiesp, and 1-p,, respectively,

restoration in a unified framework. In Secs. lll and IV, we and 7; equal to= & with probabilitiesp, and 1—p, respec-

consider the mean-field model for error-correcting codes antlvely. Thus

image restoration, respectively. We derive the equations for

the order parameters of the two-stage thermodynamics using

the cavity method, and present numerical results illustrating

the robustness of selective freezing against uncertainties in ~ Pou({J} {7H{&H = exp{ B2 Jipiiy &y

hyperparameter estimation. We further demonstrate that even

when the noise model changes without the receiver/

restoration agent realizing the chang@e., it makes a wrong +/372 Tigi)’ &)

estimation of the prigr the task performance is still robust.

For the more realistic cases of lower dimensions, simulation

results illustrate the relevance of the infinite-range model inyhere

providing qualitative guidance. The conclusion is given in

the binary symmetric channel, the outpdt§...ip are equal

Sec. V.
8 1I 1-p; d B 1I 1-p, @
==In an ,==In :
Il. FORMULATION 75 P, 2 P,
Consider an information source which generates data rep-
resented by a set of Ising spifg;}, where&==1 andi _ o
=1,... N. The data are generated according to the sourcé&he first summation in the exponent of Eg) extends over
prior to P({£}). For error-correcting codes transmitting un- an appropriate set of the indiceis (. . . ,i,).

biased messages, all sequences are equally probable, andThe Gaussian channel is defined by, for a given sequence
P({&)=2"N. For images with smooth structures, the prior{¢;},

consists of ferromagnetic Boltzmann factors, which increase

the tendencies of the neighboring spins to stay at the same

spin states, that is,

1
L 5 Pout({J}v{TH{%})O‘eXF{—Z—JzE (Jiy iy~ dobiy & )?
Pl =757 exp(;s 2 gisj). (1)

1
—2—722 <n—a§i>2). (5)

Here(ij) represents pairs of neighboring spizss the va-
lency of each site, and the partition functidgg;) is given
by
Jo and a are the strengths of the signals to be fed into the
_ Bs channel, and)?> and 7* are the variances of the noise. We
Z(B) =Tt ex;{? <.E,> &ij |- @ hote that by letting3; and 3, to be J,/J? anda/ 7% respec-
tively, the input-dependent terms of E@) reduce to those
The data are coded by constructing the codewords, which a&f Eq. (3), which therefore can be regarded as the noise
the products op spinsJiOl.,_ingil' . -gip for appropriately  model for both binary symmetric and Gaussian channels.
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According to Bayesian statistics, the posterior probability

that the source sequencefis}, given the outputdJ} and H{o}= -B> Jil--.ipUil‘ : 'Uip—hz TiOj
{7}, takes the form
Bm D
P{ot{3}{m) o Pou{IL{rt{ah)Ps({a}).  (6) R R (9)
Using Egs.(3) and(1), we have One then regards s¢m) as theith bit of the decoded/
restored information.
P{a}{I}{r})= exp( ,BJZ Jiyoi Ti O To reduce the sgan;itivjty of the decodi_ng/rgstoration pro-
P P cess to the uncertainties in parameter estimation, we propose

3 a two-stage process of selective freezing instead of the one-
. Ps o stage thermodynamic process implied by B). In the first
B2 ot z <.2,> oioj|. (D stage the spins evolve thermodynamically as prescribed in
Eqg. (8), and the thermal averagés;) of the spins are moni-
It often happens that the receiver at the end of the noisyored. We may relatéo;) to an effective fieldH; by (o)
channel does not have precise information3n 3., or Bs. = tanhH;. Spins with larger magnitudes ¢&;) correspond
One then has to estimate these parameters. If the receivar larger magnitudes dfl;. They are more likely to agree
estimates3, h andg,, for B;, B, and B, respectively, then with the correct message or image bit, and are less likely to
the mean of the posterior distribution of is equal to the change signs even when the hyperparameters vary. Their
thermal average, relative stability can be used to assist the less stable spins to
boost their robustness against hyperparameter uncertainties.

_Tr oe ot Hence we select those spins witfv;)| exceeding a given
{oi)= Tre Hiot (8) threshold#, and freeze them in the second stage of the ther-
modynamics. The average of the spinin the second stage
where the Hamiltonian is given by is then given by

_ Tl [0((07)2= 62) 55, sty + O( 67— (0)2) & FI)
<Ui>: —, (10
TrH [®(<UJ>2_ 92)5;}]_ ’sg,(gj>+ (02—<gj>2)]e—H{0’}

where® is the step function, an#i{v} is the Hamiltonian  if the hyperparameters can be estimated precisely. However,

for the second stage, and has the same form a¢dEi the ~ We remark that the purpose of selective freezing is rather to

first stage. To increase the flexibility in the process, the paProvide a relatively stable performance when the hyperpa-

rametersB, h, and B, can be replaced b)@ R andZ% rameters cannot be estimated precisely. This cannot be re-
1 ) m ’ 1 m

. . ~ vealed from the inequality, but will be confirmed by the ana-
respectively in the second stage. One then regardsrsgas lytic and simulation results in Secs. Il and IV.
theith spin of the decoding/restoration process.
The most important quantity in selective freezing is the
overlap of the decoded/restored bit égp) and the original
bit & averaged over the output probability and the spin dis-

Ill. INFINITE-RANGE MODEL FOR
ERROR-CORRECTING CODES

tribution. This is given by Let us now suppose that the output of the transmission
channel consists of only the set qfspin interactions
M= TI fdJH dePS({g}) {3i,...i,}- Hamiltonian(9) then becomes
&
X Poul {3} {H{ D) &isgr(a). 11 H{U}:_ﬁi <E<i Jiji 01T (13
<<y
Following Appendix A of Ref[5], we can prove the inequal-
ity where we have se8,,=0 for the case that all messages are
equally probable.
M=M(B=B;,h=B.,Bm=Bs), (12) Analytical solutions for the overlap are in general unavail-

able. We therefore consider the infinite-range model in
where the right hand side is the overlap of giegle-stage which the exchange interactions are present for all possible
dynamics when the model parametgtsh, and 8,, match  pairs of sites in the Hamiltonian of E¢L3).
the source parametef, 8., and g, respectively. Hence To consider the transition between error-free and errored
selective freezing cannot outperform the single-stage procesegimes, we are interested in the noise model in which
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Ji,. g is Gaussian with meap!j0§i1~ . -gip/Np*l and vari-  where
ancep!J?/2NP~ 1. Since all messages are equally probable,

we can apply a gauge transformatiofn— o&; and Jil---ip
*}Jil,_,ipgil' . .gip to Eg. (13), and arrive at an equivalent

p-spin model with a ferromagnetic bias, where

f=pgign’ ™t and G-2pPL (19

andu; is a Gaussian variable with mean 0 and variance 1.

NP1 1/2 NP1
P(‘]il"'ip):( szp!) &R~ 7%p! B. Order parameters in the first stage
| 2 Self-consistently, applying the cavity argument to all
<3 = p: j (14) terms in Eq(17), we can obtain self-consistent equations for
ig-eeip Npil 0 mandq:
The Nishimori point for this model is located At=2j,/J2. B
The infinite-range model is exactly solvable using mean- m= | DutanhG, (20
field theoretical techniques for disordered systems such as
the replica or cavity methofl11]. Here we use the cavity
method because of its more transparent physical interpreta- q= J DutanitG, (21)
tion, and some obstacles encountered in the use of the replica
method.

2 . .

The cavity method uses a self-consistency argument tyhereDu=due™ #1\2m is the Gaussian measure a6d
consider what happens when a spin is added or removed m+ \/au. The overlap for the one-stage decoding process
from the system. The central quantity in this method is thes given by
cavity field which is the local field of a spin when it is added
to the system, assuming that the exchange couplings act only m
one way from the system to the new spbut not from the M= E sgn( o) =erf—. (22)
spin back to the systemSince the exchange couplings feed- i \/E
ing the new spin have no correlations with the system, the

cavity field becomes a Gaussian variable in the limit of largey oy we consider selective freezing. If we introduce a freez-

valency. ing thresholdd so that all spins witi o;)2> 6? are frozen,
then the freezing fractiohis given by

Z|lr

A. Average spin in the first stage

We start with the so-called “clustering property” for 1 . 1 u, 1 u_
mean-field systemgl1], =X EI O((o)) = 6)=1- EerfE“L Eerfﬁ-
(o1, -oi)=(o1) (o), (15 23

where( ) represents thermodynamic averages. As shown ilWhereuiz(iuo—rAn)/\/a with tanhuy= 6.
Appendix A, the clustering property enables us to express
the thermal averages of a spin in terms of the cavity field, o
. C. Average spin in the second stage
say, for spin 1,
Assuming that the spinr; is dynamic in the second stage,
(o) =tanhghy, we can write

p—1
h,= Jii Ao W (o \1, 16 TN T ~ . . ~
1 1<j2<2-..<jp 1j, lp< J2> < lp> ( ) H{O'} H{O'} 181<j1'2<jp,1 UlJljl---Jp,lsljl [O'JS®
wher_e thg su_persqriptl denotes the th_ermal averages_for a X(62—<0'J-S>2)—I—Sgr(a'js>®(<a'js>2— 6%)], (24
Hamiltonian in whicho; and the associated exchange inter-

actions are absent, but otherwise identical to @&@§). Thus ~\1 s o o

h, is the cavity field obeying a Gaussian distribution, whosehereH{o} '~ is the Hamiltonian when spin 1 is completely
mean and variance apgomP~* andpJ2qP~ /2 respectively, Femoved from the system in both stages of the thermody-
wherem andq are the magnetization and Edwards-Andersor@mic process. Removing spin 1 may cause the thermal av-

order parameter, respectively, given by erages of other spins to adjust sligzhtlyzin the first stage.
Hence some dynamic spin@ith (o)< 6°) may become

1 1 ) frozen onegwith (o )?> #?), and vice versa, so that, strictly
M=y Z (o)) and g= N Z (oi)". 7 speaking, further terms should be considered in (24) to
account for these secondary effects. For example, if lsjgn
It is convenient to write induced to switch from dynamic to froze€or vice versaon

removal of spin 1, then the Taylor expansionl-d){?r} im-
Bhi=m+ \/an , (18)  plies that an extra term
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_7 o \1_5_ o \1_ p\_ o \1 o )
B(sgn(o) W) "= 6) = 8({o) ~+ 0)1({ow) hy=h.,= Jnjhg ey H) (o

>\1j
1j#ky - <kp—2

p—1 P2
_<0-k>\l) . 2 ‘]kjlj 71]__[ {O'J (C] (30)
1<jy - <jp-1#k P=ls=1 N ) ) )

When Eqgs.(29)—(30) are substituted into E(27), the sig-
X[6*=((oj )" H?]+sgn(oj ) 1O[ (o ) H)*— 671} nificant contribution comes from the terms which pair up

25 Jljjl...jpfz a_ndJljkl_.“.fH. The .vario.us terms appearing in
the summation ovejr#j,<- - - <j,_, involve thermal aver-
ages in the absence of spins 1 jorWe assume that the
effects of removing a spin is negligibleshich can be shown
to be equivalent to the replica symmetric approximation in
the replica methodl12]). Then, replacing the components of
the terms by their mean values, and counting Bt ?/(p
—2)! terms appearing in the summation ovegr<---
<jp-2, We arrive at

should be incorporated into E(24). Here we have neglected
these terms for clarity. Nevertheless, justificatéoposteriori
can be provided for their deletion.

Using a cavity argument similar to Appendix A, we can
show that

p—1

(}1)=tanh,f% E Jljl...jp713131 [<Ejs>\1

1<j1 " <jp-1

o

~ ~ |~ 1
(o)=tanhp fy + 5 (p— 132G 2 [8(oy)~ )~ 6(o)

XO(0?—(aj)%) +sgn(o; ) 'O (o) )?— 69)] . _
+6)1[sgn(aj) — (o) 1(Bsectiph;)(rP~*tanhphy)
(26)
(31)
However, the effective field on the right hand side of Eq. _ o _
(26) is still not a cavity field becausgr; ), which is used in wherer is the order parameter describing the spin correla-
the step functions to decide whether the spiis dynamic or  10NS ©f the two thermodynamic stages:
frozen in the second stage, is different fr«ﬁn‘]s>\1. Hence it 1

may have correlations with spin 1. Taylor expansiof®f)  r= N Z (o) {(0)O[ 62— (0)?]+sgn o) O (a;)>— 6%]}.

about(o; )'* yields (32)
_ s Equation (31) can be simplified by introducing the trans-
(op)=tanhBih+ > I1jjy s susceptibilityy,, , which describes the response of a spin in
UFly<lp-2 the second stage to variations of the cavity field in the first
p-2 stage, namely,
x 1 o) *O[6°—((o; )" )] +sgn(c; ) 'O
= 1« Xop)
\1y2_ p2 W1/ \1 Xu=y 2 h (33
X[(aj) )= 0 11sgn(oj) = (o) 1 ((oy) N dh

Since(a;) equals sgh; for tant*sh>¢?, and tanigh; other-

_0)_5(<0j>\1+ 0)](<0-j>_<0-j>\1) ’ (27) wise, we obtain
whereh, is the generic cavity field which is now completely Xtr:i E [6((oi)—6)— 6({oi)+ 0)][sgn(a;)
uncorrelated with spin 1. It is given by N 4
p-1 — (1)1 sectiph;. (34)

h.= S =~ \\1 2_ (. V12
" 2 Jljl""P*151:[1 (o) 701"~ ({3 )] Equation(31) can thus be simplified to
+sgr(o; ) 1O[ (o)1)= 671} (28) - (. p
(o1)=tanhBihy+ = (p—1)3%P x tanhph, |

To evaluate the differencéo;)—(o;)\! appearing in Eq. (35)
(27), we have to apply the cavity method a second time, by
comparing the changes when both spins 1 jase removed. .
This is done in Appendix B, and the result is D. Order parameters in the second stage

The cavity fieldﬁl in the second stage is a Gaussian vari-
(oj)— (o) \*=(Bsectiph;)(h;stanhphy)), (29  able. Its mean and variance apgomP~* and pJ?qP~1/2,
respectively, wherem and q are the magnetization and
where Edwards-Anderson order parameter, respectively, given by
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Z| -

Z [0(6°— (i)} (o) + O ({a)?— 6%)sgn( o) ],
(36)

~ 1 ~
A= 2 [0(67—=()*)(o7)*+O(01)*= 6%)]. (37)

Furthermore, the covariance betwedm, and h; is
pJ?rP~1/2, wherer is given in Eq.(32).
Algebraic manipulations can be simplified if we write, for

i=1,
ph=f+qu,
BEZHA%L \[a(ﬂuﬁ\/l_?? vi),

where u; and v; are independent Gaussian variables wit
mean 0 and variance I andq are given in Eq(19), and

(39

(39

m=pBiotP ! and G- SBUGPL (40)

.P r
r= 2,8,8er Pt oand == (41)
vaq
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1.0 2.0
T

0.5

h FIG. 1. The overlapM; as a function of the decoding tempera-

ture T for p=2 andj,=J=1 for various given values of freezing
fraction f. In this and the following figuresf=0 corresponds to
one-stage decoding/restoration.

Eqs (20), (21) and(42)—(45) for the order parameters, g,

m, q, r, and y,, form a close set of equations. The perfor-
mance of selective freezing is measured by

2[@ —(ai)?)sgn(o) + O ((o;)?

sf—

Self-consistently applying the same cavity argument to all

terms in Eqs(36), (37), (32), and(34), and performing the
Gaussian average ovay andv;, we arrive at the following

self-consistent equations fam, q, r and y; :

1

! fu_+Ju+D JDt hL
—elnm— u v an y
A

m= 2
@2

_+
J—
Gt et fu’+fu+D th L
=1l——enMl—+ zselnm— u v lan s
AN AN AN

(43
iaN

U+
Du|tanhG|+f Duf Dv tanhG tanhL,
u_

(44)
exp(—u3/2)
=——— | Dv(1—tanhL(")
X St ] P
exp( u212) Dv(1+tanhL{), (45
v +tan
J\/wpqp 3 mpoP T

where

L=m-+ Jﬁ( nu+1-n%)+ g(p— 1)BI%rP~ 2y tanhG,
(46)

L,(f)zF}wr \Fd( UL +1— nzv)ig(p—l)Eerp’zxtre.
(47

—6%)sgnai)]. (48)
From the above parameteid,; can be derived as
1 uy 1 wu_ ug Ly
Mg=— Eerfﬁ - Eerfﬁ + JL Du erfm:‘g)

whereL,=m+ Vqnu+[p(p—1)/2]BI%rP~ 2y, tanhG.

We have also tried to derive the above equations using the
replica method. However, in the nearest results that we could
find, terms involving the trans-susceptibility are absent,
which we believe to be unphysical. Therefore, the replica
approach to the order parameter equations remain an open
question.

We show an example of the cape=2 andjo=J=1 in
Fig. 1, where the overlap (; is plotted as a function of the
decoding temperatufB(= 8~ *=B1) for various given val-
ues of freezing fractiof. Whenf=0 (no spins frozephand
f=1 (all spins frozep the dynamics is equivalent to one
with single stage, and the overlap reaches its maximum at the
Nishimori pointT=J?/2j,, as expected. We observe that the
tolerance against variations ifi is enhanced by selective
freezing for certain values df

It is therefore interesting to consider the appropriate val-
ues off for the best overlap at a given decoding temperature.
Figures 2a)—2(f) show that at high temperatures such as in
Figs. 2a)—2(c), there is a single maximum and its position is
fairly independent of temperature, lying arouid 0.9 in the
present case. At intermediate temperatures such as in Figs.
2(d)—2(e), there appear two maxima and as temperature



PRE 62 ERROR-CORRECTING CODES AND IMAE. .. 185

0.944 —//\ === T T
il [ e S
0.940 | - -
% 0.8 / |
= g
0.936 /
@ ®) © we |
0.932 L L . ‘
0.9440 | L L g4
s |
0.9435 | 3 - 02 |
@ © o 1
0.9430 : : : ; !
0.0 0.5 0.0 0.5 0.0 0.5 1.0 [
f f f 0.0 ‘ .
0.0 05 10 15 20
FIG. 2. The overlapM ¢ as a function of the freezing fractidn T
at temperature$ = (a) 1.5,(b) 1.2,(c) 1.0,(d) 0.8, (¢) 0.6, and(f) FIG. 4. The freezing fractioffor the best overlap as a function
0.4 forp=2 andj,=J=1. of temperaturél for p=2 andj,=J=1. In this and the following

figure, the solid line is the global maximum, the dashed line is the
changes, there is a discontinuous jump in the maximum pdecal maximum, and the shaded region hag<M.
sition. Figure 2f) shows that when the temperature is lower

than the Nishimori point Ty=0.5), the overlap cannot be the sensitive dependence of the thermal averages of the spins

on temperature. At high temperatures, most spins are ther-

improved by selective freezing. ; .
Figure 3 compares the overlap of the one-stage dynamic\g;a"yl ag'tatfd' and tc?e freezing threshold has to be set to a
ry low value in order to freeze a given fraction of spins.

with that of the best of selective freezing. It shows that wheny .~ oo o4 o ow temperatures, most spins are rela-
the decoding temperature is misdetermined to be higher thafﬂ/ely stable, and Ehe freezing thresholé has to be set to a

its optimgl value at the Nishimori point, selective freezingvery high value in order to keep a given fraction of spins
can provide a fairly robust performance. Furthermore, theyynamic in the second stage. We conclude that the freezing
choice of the freezing fraction for such robust performancaction is a better controlling parameter for the decoding
appears to be quite independent of the temperature. The solighrformance.

line in Fig. 4 locates the position for the best overlap and, as The advantages of selective freezing are confirmed by
observed from Figs. (@-2(f), lies in the vicinity off~0.9  Monte Carlo simulations shown in Fig. 6. For one-stage dy-
for a large range of temperature. The unshaded region in theamics, the overlap is maximum at the Nishimori point
same figure also indicates that selective freezing leads to giTy=0.5), as expected. However, it deterriorates rather rap-
improvement in the overlap over a wide range of the paramidly when the decoding temperature increases. In contrast,
eter space. selective freezing maintains a more steady performance, es-

We have also studied the dependence of the overlap opecially whenf=0.9.
varying the freezing threshol@ rather than the freezing frac-
tion f. However, Fig. 5 shows that the optimal valuegdfas
a much larger dependence on the temperature. This is due 0 |y conventional image restoration problems, a given de-
graded image consists of the set of pixetg, but not the set

IV. MEAN-FIELD MODEL FOR IMAGE RESTORATION

0.95
/ o )
0.94 -~ 0.8
0.6
<F 093 |
[«
1-stage
0.4
092 |
0.2
0.91 ' ‘ ‘ )
0.0 0.5 1.0 15 20
T 0.0
0.0 05 1.0 15 2.0

FIG. 3. The temperature dependence of the best overlap of se-
lective freezing compared with the overlap of the one-stage dynam- FIG. 5. The freezing threshold for the best overlap as a func-
ics forp=2 andj,=J=1. tion of temperaturdl for p=2 andjo=J=1.
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0.95

1
M= N > &sgn(oy)

AN R 1 Bmm+haé
- 4 = expl( Bsmoé) £ erf———.
094 - -3 2 coshBmq ggl R BsMot)é J2hr
1 (54)
Et
o0 Next we consider selective freezing in the second stage with
093 - ::2;:3:; a freezing threshold. The freezing fraction is given by
B 0.9 1
= N2_ g2~
=8 2 OUo) 0= 5 2| eXPBsmot)
0.92 . . : : 1 u 1 u_
0.3 06 0.9 12 15 x| 1— Zerf +(£) + —erf—(g) , (55)
T 2 V2 20 2

FIG. 6. Results of Monte Carlo simulations for the overlaps of .
selective freezing compared with those of the one-stage dynamic¥hereu..(§) =(+uo—Bnm—hag)/h7, with tanhu,=6. The
for p=2 andj,=J=1, corresponding to Fig. 1. The simulation Order parameter of the second stage is given by
parameters aré&=1000, with an initial overlap of 0.9 and 200 1
samples. Each stage consists of 500 Monte Carlo steps per hode forr"nE - O(02— (N o)+ O ({0 )2— 82)s :
equilibration, and 1000 Monte Carlo steps per node for averaging. N 2. [0(6°=(01)") o) ((1)"= 6%)sgno) ]

of exchange interaction§); ... ; }. On the other hand, ef- 1 1 u,($
- : roc tha - o T > exXp(Bmot)| — serf
fective restoration requires the introduction of a model prior 2 coshBsmg 571 2 J2
distribution of the pixels for smooth images. In this case the
Hamiltonian corresponds to that of a random field Ising 1 u_(é u, (8)
model: — —erff——+ DxtanhL |, (56)
"2
2 u_(é)
B ~
H{o}=-h> 70— 7m > ooy (50)  whereL = B,,m+haé+h=x. The overlap for selective freez-
' i ing is given by
In mean-field systems, each pixdias an extensive valency. 1
The pixels7; are the degraded versions of the source pixelsy, = E §-[®(02—<a->2)sgr(})
& , corrupted by noise which, for convenience, is assumedto - N G ' '
be Gaussian with meaa¢; and variancer?, i.e.,
| +0((0)*~ 6°)sgr(o7)]
1 ~
eXF{__z(Ti_afi)z} 9(Bmm) +hag
27 = exp(Bsm erff—————,
P(rl¢)= . (51) T coshfiamy (¢, SFAMEIE == 2
27T
. . S (57
In turn, the source pixels satisfy the prior distribution in Eq.
(1). Applying the cavity argument for mean-field systems,where
the prior distribution becomes factorizable, _
BmM—Ug, BnM<BmM—Ug
P(g-):w (52) (Bam)=1 BmM, BmM— U< BmM<BmM-+u
i 2 COShﬂSmo ’ g ﬁm mith m :) m m 0
BnM+Ug, Bnm>pBm+Uug.
wheremgy=tanhg,m,. The order parameter in the first stage " ° " " ° (58)
is given by
We note that since the spin-glass interaction is absent in this
m= i E (o)) case, there are no trans-susceptibility effects. This is unlike
N4 7i the case of error-correcting codes, in whigh is nonzero

whenJ is nonzero.

_ 1 D exp(ﬂsmof)J Dx tanhU, The three cases of the functigfs,,m) in Eq. (58) cor-
2 coshBsmg =71 respond to three situations. Wheggh,m< B,,m— uy, all the
(53) dynamic spins in the second stage have negative thermody-
namic averages, and therefore take the vatdein the two-
whereU = B,m+haé+hrx. The overlap for the one-stage stage restoration process. This is equivalent to a one-stage
restoration process is given by restoration process in which all spins with thermodynamic



PRE 62 ERROR-CORRECTING CODES AND IMAE. .. 187

0.74

0.72 g g % v

&
<* 0.70

=-—a f=0.1

¢--<1=0.3
s —=21=05
0.68 - +-—f=0.7
w9 {20.9
0.66 L 1 1 L 1
0.0 0.2 04 0.6 0.8 1.0

0.0 05 1.0 15 20 h
h
FIG. 8. The performance of selective freezingaat =1 and

FIG. 7. The lines of optimal performance in the space of theg =1.05, with8,,/h set to the optimal rati@,/8,=1.05 for vari-
random-field strength and the restoration temperatufgzﬁg,l in ous freezing fraction$
the mean-field model of image restoration far-7=1 and S
=1.05. The dotted line is the line of operation wigh,/h setto the  mgance with the line of operation which, as discussed in Ref.
optimal ratio 8s/8,=1.05. Atf=0.9 the dynamic spins are com- [5] s an important factor in hyperparameter estimation. This
plete_ly frozen to+1 to the left of the kink, but only partially so to ;s %j|justrated by the optimal lines for small values fofiear
the right. the Nishimori point T,h) = (1.05 1,1) in Fig. 7.

However, the advantage of selective freezing does not
averages above the threshold) are frozen to+1, and 1o onJy rely on the fortuitous combination of parameters. Even
—1 otherwise. Similarly, whe,,m> B8,m+ug, all the dy- when the parameters are not chosen optimally, selective
namic spins in the second stage have positive thermodyfreezing still maintains a rather robust performance. For ex-
namic averages. Only Whﬁﬁ'mm—uo<,3mﬁ"<ﬂmm+ updo ample, along the line of optimal performance fior 0.9 in
we have the dynamic spins frozen to partiyl and partly ~ Fig. 7, the bending at the kink only causes a modest reduc-
—1. tion in the overlapM; in Fig. 8.

We can consider the condition for the optimal perfor- To study the robustness of the performance of selective
manceM  of selective freezing. For a given distribution of freezing, we model a situation common in modern commu-

data and noiseg(3,,m) is the only adjustable parameter in nication channels carrying multimedia traffic, which are of-
m

Eq. (57), playing the same role as the adjustable parametetlen pursty in nature. Since ‘_‘burstiness” results in intermi_t-
B,,m for one-stage dynamics in E¢54). In the space oh tent interferences, we consider a noise with two Gaussian

and 3., the performance is optimal along the lié3. components, each_with its own characteristics. A rand_om
— B,,m/Bm, for one-stage dynamics] (8,=al72 for frr_:lcthn f, of the pixels arellnfluer'lced by Gaussian noise
Gaussian noise Analogously, there exists a line of optimal Wlth|3|ghnal Strf”gth:éa and r;msg varlan.cei. Tzhel_:est of :L‘e

' _ ~ . pixels have strengtla, and noise variance;. Hence the
Fr(;rggir:;]?nce defined bly/ 3= g(Amm)/Bsmo for selective distribution of the degraded pixels are

An example of the lines of optimal performance is shown
in Fig. 7. It is interesting to note the kinks for certain freez- _ i . £)2
: : " . exr{ 2 (Ti—aéi) }
ing fractions. They correspond to transitions of cases in 277
which the dynamic spins are partially or completely frozen to P(7|&)="11 \/Zwrf
+1.

A comparison of Eqs(54) and (57) shows that selective 1 5
freezing performs as well as one-stage dynamics, but cannot exp{ - ﬁ(ﬂ —a&;) }
outperform it. Nevertheless, selective freezing provides a +f, 2
rather stable performance when the hyperparameters cannot \/2777'5
be estimated precisely. In image restoration, the usual prac-
tice is to choose a fixed ratio ¢f,,/h. Figure 8 confirms this wheref,=1—f;. The equations for the order parameters can
stability along the line of operation witl8,,/h set to the be generalized from the single component case in a straight-
optimal ratio B8s/B,. Note especially that the lines with  forward manner.
=0.7 and 0.9 attain a nearly optimal value Mfy over a A case of interest is that the restoration agent operates on
wide range of parameters. The kinkfat 0.9 is, again, due the assumption of the characteristics of the majority compo-
to the appearance of the1 frozen dynamic spingto the  nent of the channel, say the first component. Hence it oper-
right of the kinK. ates at the ratiqu/h=Bsrf/a1. Suppose the Gaussian noise

The stable performance of selective freezing can be partlis partly interrupted to take the characteristics of the second
explained by the proximity of the lines of optimal perfor- component, but the operation parameters cannot be adjusted

: (59
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FIG. 9. The performance of selective freezing with two compo-  FIG. 10. Same as Fig. 9, except that the restoration agent oper-
nents of Gaussian noise gt=1.05, f,=4f,=0.8, a,=5a,=1, ates with the ratig8,,/h= 8% 7*2/a*, where 8% , 7*, anda* are
andr,= ,=1. The restoration agent operates by assuming the maestimated from Eqg60)—(62).
jority component, i.e.8y,/h= Bs72/a;.

V. DISCUSSION

soon enough; then there will be a degradation of the quality

. P We have introduced a multistage techni for error-
of the restored images. In the example in Fig. 9, the redu © nave oduce age technique for ero

i fth | f lective f S h C(';orrecting codes and image restoration, in which the infor-
lon of the overlapM for selective freezing is much more mation extracted from the former stage can be used selec-

moAdestItthan tt_he O_?G'f_tag_e E’;O(t:(:ﬁs Q)It i tis abl tively to improve the performance of the latter one. While
n afternalivé situation 1S that the restoration agent IS abigy, overlapM ; of the selective freezing is bounded by the

to .detect .the changes. in the average signal stren_gths a'?)?)timal performance of the one-stage dynamics derived in
noisé variance, but still operates on the assumption of %ef. [5], it has the advantage of being tolerant to uncertain-
s!ngle—compo_nent Gaussian channel.2 Suppose thf"‘t SUGRs in hyperparameter estimation. The performance is espe-
simple statistics agsgmi>, (7i) and(7) are accessible. a1y steady when the fraction of frozen spins, rather than
Then the parameters; , a*, and 7* estimated by the res- e threshold of their thermodynamic averages, is fixed in the
toration agent are obtained, fo;= 7,= 7, from the solutions  process. This is confirmed by both analytical and simula-
of tional results for mean-field and finite-dimensional models.
As an example, we have illustrated its advantage of robust-
ness when the noise distribution is composed of more

* . .
than one Gaussian components, such as in the case of

a
mg erf——=(sgnr;)=my| f,erf

e

% + fLerf %
\/57'1 ’ \/§sz

(60) 092
mg a* =(7;)=mg[ f1a;+ fra,], (61) 0.90 |
a*2+ 2= ()=t (al+ )+ 1 (a5+75), (62 0.88

and ¥ =tanh m¢/n . Using these estimated parameters, %81
the performances in Fig. 10 improve over their counterparts
based on only the majority component in Fig. 9. Still, one-
stage restoration cannot avoid the performance drop vahen
vanishes, whereas correspondingly, selective freezing has
much more gentle drop in performance. 0.82
It is interesting to study the more realistic case of two- — ©
dimensional images, since we have so far presented analyti-
cal results for the mean-field model only. As confirmed by g, 11. Results of Monte Carlo simulations for the overlaps of
the results for Monte Carlo simulations in Fig. 11, the over-selective freezing compared with those of the one-stage dynamics
laps of selective freezing are much more steadier than that @ two-dimensional images generated at the source prior tempera-
the one-stage dynamics when the decoding temperatukgre T,=2.15. The simulation parameters aye=50x 50, with an
changes. This steadiness is most remarkable for a freezingitial overlap of 0.8 and 1000 samples. Each stage consist of 1000
fraction of f=0.9. Monte Carlo steps per node for averaging.
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modern communication channels supporting multimedighe solutions of the TAP equations in the corresponding ther-
applications. modynamic systeni15]. Again, the performance of these
We found that selective freezing is most useful whenalgorithms are sensitive to the estimation of hyperparam-
more than one hyperparameters have to be estimated, as @ters. We propose that the selective freezing procedure has
lustrated by the example of image restoration, where jggth  the potential to make these algorithms more robust.
and h have to be estimated. In the example of error- Incidentally, multistage dynamics has also been applied in
correcting codes discussed in Sec. Il there is only one hythe recently popular turbo codfs6]. Messages are coded in
perparametel,,, and it is found that selective freezing has S€dUeNces with two possible permutations and at each itera-

performance advantages only whep is chosen above the tive stage, the information'derived from decoding'one se-

Nishimori point. However, more than one hyperparameter iguence is fed to th_e other in the fofm of external fields for

often present in practical applications. each bit. The technlqu_es de_veloped in the present context can
Selective freezing can be generalized to more than tw&© US€d to study this iterative process.

stages, in which spins that remain relatively stable in one

stage are progressively frozen in the following one. It is ex- ACKNOWLEDGMENTS

pected that the performance can be even more robust. K.Y.M.W. wishes to thank the Tokyo Institute of Tech-
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We have made progress in the theoretical treatment of ~APPENDIX AZ THERMAL AVERAGES OF SPINS

multistage processes using the cavity method. It allows the |, this appendix we derive EGL6) starting from the clus-

thermal averages of spins to be expressed in terms of the iy property Eq(15). For convenience we illustrate the
cavity fields. Since a cavity field is uncorrelated with the spinyq iy ation forp=2. We separate the Hamiltonian into two

in consideration, it can in turn be_ expressed in terms of th arts, one does not contairy and the other does. Hence
means and covariances of the spin averages, thereby arriving

at a set of self-consistent equations for the order parameters.
In particular, there appears a trans-susceptibility term, since H :H\l—,BZ Jijoi0. (A2)
variations of the cavity field in the first stage are correlated =1
with the spin average in the second stage due to the selective )
nature of the freezing process in the second stage. HowevelNus the thermal average can be written as
for the ordered phase considered in this paper, the effects of
S . N .

thea;rélr;)sgjgggfﬁt|blllty term is not too large except near the Trle H Tro, exp( ,30121‘4 Iy ‘Ti) / Trle—H'

On the other hand, we have a remark about the basi¢T1) = ¥ o
assumption of the cavity method, namely, that the addition or Trte ™M Tr ex;{ B> Iy Uj) / TriteH
removal of a spin causes a small change in the system de- ) A2
scribable by a perturbative approach. In fact, adding or re- (A2)
moving & spin may cause the thermal averages of other SIOIr?xpanding the exponential function in the denominator and
to change from below to above the threshotd# (or vice tracing overe, we obtain
versa. This change, though often small, induces a non- '
negligible change of the thermal averages from fractional

n
values to the frozen values of 1 (or vice versa in the Den=2 > ﬁ_l > 3y, dyy (oo WL,
second stage. The perturbative analysis of these changes is neven N*j =, 1 o "
only approximate. The situation is reminiscent of similar in- (A3)

stabilities in other disordered systems such as the perceptron, ) )
and are equivalent to Almeida-Thouless instabilities in the \€Xt We use the cl\ulstermg property to factorize the thermal
replica method 13]. A full treatment of the problem would aVerage(ay, - --o; )*~. For the coupling distribution speci-
require the introduction of a rough energy landscgi®, or ~ fied by Eq.(14), only two kinds of contributions are signifi-
the replica symmetry breaking ansatz in the replica methogant in the summation over the indicgs - - j,. In the first
[11]. Nevertheless, previous experiences on disordered sy¥ind, an index remains distinct from the rest, contributing a
tems showed that the corrections made by a more complefactor of J;;(o)**. In the second kind, two indices become
treatment may not be too large in the ordered phase. Fdraired up. However, whejpandk pair up, the thermal aver-
example, corresponding analytical and simulational results i@ge (ooy)'* becomes 1 instead of(¢;)‘!)?. Hence the
Figs. 1 and 6, respectively, are close to each other. additional contribution due to the pairing is]ij[l

In practical implementations of error-correcting codes, aI-—((oj)\l)Z]. Other than these, the contributions due to the
gorithms based on belief-propagation methods, rather thapairing of three or more indices are smaller by factordNof
Monte Carlo methods, are often employgdt]. It has re- The denominator can now be considered as a summation
cently been shown that such decoded messages convergedeer n and m, which are respectively the total number of
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indices and the number of pairs of paired indices appearinghe thermal average af; can then be written as
in a term. The number of such termsngm!2™(n—2m)!.

Hence Ty Tritie ™Moy ITr e H™ -
Den=2 2, S g n o) = Try Trilie H/Trtie H ™ (82
R =] mi2™(n—2m)!
n—2m m Using the mean-field technique developed in Appendix A,
X| 2 Jg(oppt |2 Jij[l—(<aj>\1)2]] , the denominator can be written as
i i
A4 )
( ) Den.=Tr1]- eXp{BJlja'la'j+,8 2 <0-k>\1](‘-]kla-l+‘]kjo-j)
which can be simplified to k#1j
1 .
1 +2g2 _ \1jy2
Den=2 eXp[EﬁZZj Jij[l—«aj)\l)z]] 5B gi,— [1- (o)
2
XCOS)’{BZ Jlj<oj>\1]. (A5) X (Jao1+dyjo;) } (B3)
i
Similarly, the numerator can be written as After collecting terms and discarding negligible ones,
1
Num.=2 exp = 82>, Jz-[l—(<0">\l)2]] _ _
42 j 4 ! Den.:Trlj eXp{ﬁUlz -Jlk<0'k>\lj+,80'j Z ‘]jk<0'k>\1]
K#1] K#1]
XSinhl’B; Jlj<o-j>\l] . (AG) +ﬁJ1j0'10'j
Substituting Eqs(A5) and (A6) into Eq. (A2), we arrive at +,82(1—q)J2}. (B4)
Eq. (16).
APPENDIX B: CHANGE IN THERMAL AVERAGES Together with a similar manipulation of the numerator, we
ON REMOVAL OF A SPIN obtain

In this appendix we derive E@29). For convenience we o N
illustrate the derivation fop=2. We separate the Hamil- (o)=tanhB(h;"+Jjstanhgh,’), (BS)
tonian into four parts(a) does not contain spins 1 apd(b)

contains only spins 1 and (c) contains spin 1 but ngt and  whose Taylor expansion yields
(d) contains spirj but not 1. This yields

0 (o) =(0o;)" 1+ (B seckph, M) (Jjstanhghy)),  (B6)
H=H J_BJljo-lo-j_Bk;[j Jklo_ko_l_ﬁk;_j kaO'kO'j .

(B1) which becomes Eq29) for the casgp=2.
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