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Error-correcting codes and image restoration with multiple stages of dynamics
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We consider the problems of error-correcting codes and image restoration with multiple stages of dynamics.
Information extracted from the former stage can be used selectively to improve the performance of the latter
one. Analytic results were derived for the mean-field systems using the cavity method. We find that it has the
advantage of being tolerant to uncertainties in hyperparameter estimation, as confirmed by simulations.

PACS number~s!: 05.50.1q, 75.10.Nr, 89.70.1c
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I. INTRODUCTION

The corruption of signals by noise is a common probl
encountered in information processing. To retrieve sign
from messages corrupted during the transmission thro
noisy channels, various error-correcting codes have b
proposed@1#. In particular, the error-correction mechanis
of a class of parity-checking codes can be considered
search for thermodynamically stable states of a Hamilton
constructed in terms of the message bits@2#. These codes
have been demonstrated to saturate the Shannon inform
bound in the limit that each encoded bit checks the parity
an infinitely large number of message bits@2,3#. While in
practice, each encoded bit can only check the parity o
finite number of message bits, these codes still mainta
very low bit error probability.

The need to retrieve signals from corrupted message
also inherent in image restoration@4#. Although parity-
checking bits may not be explicitly introduced for the tas
prior knowledge about the images plays a similar role. F
example, the smoothness of real-world images provide
mechanism for checking the pixel values in comparison w
those of their neighbors. A corresponding Hamiltonian, c
sisting of a ferromagnetic bias to reflect the smoothen
tendency, can be constructed in terms of the image pix
Modern techniques of image restoration based on Mar
random fields correspond to the search for thermodyna
cally stable states of the Hamiltonian system, using meth
such as simulated annealing@4#.

In a recent paper, we showed that the problems of er
correcting codes and image restoration can be formulate
a unified framework@5#. In both tasks, the choice of th
so-called hyperparameters is an important factor in determ
ing their performances. Hyperparameters refer to the co
cients of the various interactions appearing in the Ham
tonian of the tasks. In error correction, they determine
statistical significance given to the parity-checking terms a
the received bits. Similarly in image restoration, they det
mine the statistical weights given to the prior knowledge a
the received data. It was shown, by the use of inequalit
that the optimal choice of the hyperparameters correspon
the maximum posterior marginal method, where there i
match between the source and model priors. The choic
PRE 621063-651X/2000/62~1!/179~12!/$15.00
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these values correspond to the Nishimori point in the sp
of hyperparameters@6#. This is equivalent to a thermody
namic process at finite temperature, and the task performa
is better than the maximuma posteriori probability ~MAP!
method, where the values of the hyperparameters are tak
infinity, equivalent to a zero temperature process. Furth
more, from the analytic solution of the infinite-range mod
and the Monte Carlo simulation of finite-dimensional mo
els, it was shown that an inappropriate choice of the hyp
parameters can lead to a rapid degradation of the tasks.

In fact, hyperparameter estimation has been the subjec
many previous studies@7#, a recently popular one using th
‘‘evidence framework’’@8#. However, if the prior models the
source poorly, no hyperparameters can be reliable@9#. Even
if they can be estimated accurately through steady-state
tistical measurements, they may fluctuate when interfe
with by bursty noise sources in communication channe
Hence it is important to devise decoding or restoration p
cedures which are robust against the uncertainties in hy
parameter estimation.

In this paper we propose the technique of selective fre
ing as a method to increase the tolerance to uncertaintie
hyperparameter estimation. The technique has been stu
for pattern reconstruction in neural networks, where it led
an improvement in the retrieval precision, a widening of t
basin of attraction, and a boost in the storage capacity@10#.
The idea is best illustrated for Ising bits or pixels with bina
states61, though it can be easily generalized to other cas
In a finite temperature thermodynamic process, the Is
variables keep moving under thermal agitation. Some
them have smaller thermal fluctuations than the others,
plying that they are more certain to stay in one state than
other. This stability implies that they have a higher probab
ity to stay in the correct state for error-correction or ima
restoration tasks, even when the hyperparameters are no
timally tuned. It may thus be interesting to separate the th
modynamic process into two stages. In the first stage
select those relatively stable bits or pixels whose tim
averaged states have a magnitude exceeding a certain th
old. In the second stage we subsequently fix~or freeze! them
in the most probable thermodynamic states~for Ising vari-
ables this corresponds to the sign of the time-averaged st!.
Thus these selectively frozen bits or pixels are able to p
179 ©2000 The American Physical Society
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180 PRE 62K. Y. MICHAEL WONG AND HIDETOSHI NISHIMORI
vide a more robust assistance to the less stable bits or p
in their search for the most probable states. The selec
freezing procedure reduces to the usual finite-tempera
decoding or restoration process if all bits or pixels are froz
~since nothing happens in the second stage!, or no bits or
pixels are frozen~since the second stage is merely a contin
ation of the equilibration process of the first stage!.

The two-stage thermodynamic process can be stu
analytically in the mean-field model, which provides a qua
tative guide to the behavior of more realistic cases of low
dimensions. However, it is necessary to make a remark a
the theoretical approach. That is, as far as we have tried
analytical solution has been inaccessible by the more c
ventional replica method. Rather, we have to use the ca
method to obtain the equations for the order parameters
particular, the cavity method leads to the appearance
term called the trans-susceptibility, which correctly describ
the effects of the thermodynamics of the first stage on tha
the second.

The paper is organized as follows. In Sec. II we brie
review the formulation of error-correcting codes and ima
restoration in a unified framework. In Secs. III and IV, w
consider the mean-field model for error-correcting codes
image restoration, respectively. We derive the equations
the order parameters of the two-stage thermodynamics u
the cavity method, and present numerical results illustra
the robustness of selective freezing against uncertaintie
hyperparameter estimation. We further demonstrate that e
when the noise model changes without the receiv
restoration agent realizing the change~i.e., it makes a wrong
estimation of the prior!, the task performance is still robus
For the more realistic cases of lower dimensions, simula
results illustrate the relevance of the infinite-range mode
providing qualitative guidance. The conclusion is given
Sec. V.

II. FORMULATION

Consider an information source which generates data
resented by a set of Ising spins$j i%, wherej i561 and i
51, . . . ,N. The data are generated according to the sou
prior to Ps($j i%). For error-correcting codes transmitting u
biased messages, all sequences are equally probable
Ps($j%)522N. For images with smooth structures, the pr
consists of ferromagnetic Boltzmann factors, which incre
the tendencies of the neighboring spins to stay at the s
spin states, that is,

Ps~$j%!5
1

Z~bs!
expS bs

z (̂
i j &

j ij j D . ~1!

Here ^ i j & represents pairs of neighboring spins,z is the va-
lency of each site, and the partition functionZ(bs) is given
by

Z~bs!5Trj expS bs

z (̂
i j &

j ij j D . ~2!

The data are coded by constructing the codewords, which
the products ofp spinsJi 1••• i p

0 5j i 1
•••j i p
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chosen sets of of indices$ i 1 , . . . ,i p%, the choice of which
determines the type of code. Each spin may appear in a n
ber ofp-spin codewords; the number of times of appeara
is called the valencyzp . The Sourlas code@2# is equivalent
to the infinite-range model, in which all possible codewor
of p spins are chosen fromN spins. On the other hand, th
Kabashima-Saad code@3# consists of combinations in which
each spin appears in a random preselection ofzp codewords.
For conventional image restoration, codewords with onlyp
51 are transmitted, corresponding to the pixels in the ima
the inclusion of terms withp.1, and their positive effects
on restoring the original image, were also discussed in R
@5#. For simplicity, we restrict ourselves to the case of
single nonvanishing value ofp with p>2, andp51.

When the signal is transmitted through a noisy chann
the output consists of the sets$Ji 1••• i p

% and $t i%, which are

the corrupted versions of$Ji 1••• i p

0 % and $j i% respectively. In

the binary symmetric channel, the outputsJi 1••• i p
are equal

to 7Ji 1••• i p

0 with probabilitiespJ and 12pJ , respectively,

andt i equal to7j i with probabilitiespt and 12pt respec-
tively. Thus

Pout~$J%,$t%u$j%!} expS bJ( Ji 1••• i p
j i 1

•••j i p

1bt( t ij i D , ~3!

where

bJ5
1

2
ln

12pJ

pJ
and bt5

1

2
ln

12pt

pt
. ~4!

The first summation in the exponent of Eq.~3! extends over
an appropriate set of the indices (i 1 , . . . ,i p).

The Gaussian channel is defined by, for a given seque
$j i%,

Pout~$J%,$t%u$j%!} expS 2
1

2J2 ( ~Ji 1••• i p
2J0j i 1

•••j i p
!2

2
1

2t2 ( ~t i2aj i !
2D . ~5!

J0 and a are the strengths of the signals to be fed into
channel, andJ2 and t2 are the variances of the noise. W
note that by lettingbJ andbt to beJ0 /J2 anda/t2 respec-
tively, the input-dependent terms of Eq.~5! reduce to those
of Eq. ~3!, which therefore can be regarded as the no
model for both binary symmetric and Gaussian channels
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According to Bayesian statistics, the posterior probabi
that the source sequence is$s%, given the outputs$J% and
$t%, takes the form

P~$s%u$J%,$t%!}Pout~$J%,$t%u$s%!Ps~$s%!. ~6!

Using Eqs.~3! and ~1!, we have

P~$s%u$J%,$t%!} expS bJ( Ji 1••• i p
s i 1

•••s i p

1bt( t is i1
bs

z (̂
i j &

s is j D . ~7!

It often happens that the receiver at the end of the no
channel does not have precise information onbJ , bt , or bs .
One then has to estimate these parameters. If the rec
estimatesb, h andbm for bJ , bt andbs , respectively, then
the mean of the posterior distribution ofs i is equal to the
thermal average,

^s i&5
Tr s ie

2H$s%

Tr e2H$s%
, ~8!

where the Hamiltonian is given by
pa

he
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-
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y

y

ver

H$s%52b( Ji 1••• i p
s i 1

•••s i p
2h( t is i

2
bm

z (̂
i j &

s is j . ~9!

One then regards sgn^s i& as the i th bit of the decoded/
restored information.

To reduce the sensitivity of the decoding/restoration p
cess to the uncertainties in parameter estimation, we prop
a two-stage process of selective freezing instead of the o
stage thermodynamic process implied by Eq.~8!. In the first
stage the spins evolve thermodynamically as prescribe
Eq. ~8!, and the thermal averages^s i& of the spins are moni-
tored. We may relatês i& to an effective fieldHi by ^s i&
5 tanhHi . Spins with larger magnitudes of^s i& correspond
to larger magnitudes ofHi . They are more likely to agree
with the correct message or image bit, and are less likely
change signs even when the hyperparameters vary. T
relative stability can be used to assist the less stable spin
boost their robustness against hyperparameter uncertain
Hence we select those spins withu^s i&u exceeding a given
thresholdu, and freeze them in the second stage of the th
modynamics. The average of the spins̃ i in the second stage
is then given by
^s̃ i&5

Trs̃ i)
j

@Q~^s j&
22u2!ds̃ j ,sgn̂ s j &

1Q~u22^s j&
2!#e2H̃$s̃}

Tr)
j

@Q~^s j&
22u2!ds̃ j ,sgn̂ s j &

1Q~u22^s j&
2!#e2H̃$s̃%

, ~10!
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whereQ is the step function, andH̃$s̃% is the Hamiltonian
for the second stage, and has the same form as Eq.~9! in the
first stage. To increase the flexibility in the process, the
rametersb, h, and bm can be replaced byb̃, h̃, and b̃m

respectively in the second stage. One then regards sgn^s̃ i& as
the i th spin of the decoding/restoration process.

The most important quantity in selective freezing is t
overlap of the decoded/restored bit sgn^s̃ i& and the original
bit j i averaged over the output probability and the spin d
tribution. This is given by

M sf5(
j

) E dJ) E dtPs~$j%!

3Pout~$J%,$t%u$j%!j isgn̂ s̃ i&. ~11!

Following Appendix A of Ref.@5#, we can prove the inequal
ity

M sf<M ~b5bJ ,h5bt ,bm5bs!, ~12!

where the right hand side is the overlap of thesingle-stage
dynamics when the model parametersb, h, and bm match
the source parametersbJ , bt , andbs , respectively. Hence
selective freezing cannot outperform the single-stage pro
-

-

ss

if the hyperparameters can be estimated precisely. Howe
we remark that the purpose of selective freezing is rathe
provide a relatively stable performance when the hyper
rameters cannot be estimated precisely. This cannot be
vealed from the inequality, but will be confirmed by the an
lytic and simulation results in Secs. III and IV.

III. INFINITE-RANGE MODEL FOR
ERROR-CORRECTING CODES

Let us now suppose that the output of the transmiss
channel consists of only the set ofp-spin interactions
$Ji 1••• i p

%. Hamiltonian~9! then becomes

H$s%52b (
i 1,•••, i p

Ji 1••• i p
s i 1

•••s i p
, ~13!

where we have setbm50 for the case that all messages a
equally probable.

Analytical solutions for the overlap are in general unava
able. We therefore consider the infinite-range model
which the exchange interactions are present for all poss
pairs of sites in the Hamiltonian of Eq.~13!.

To consider the transition between error-free and erro
regimes, we are interested in the noise model in wh
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Ji 1••• i p
is Gaussian with meanp! j 0j i 1

•••j i p
/Np21 and vari-

ancep!J2/2Np21. Since all messages are equally probab
we can apply a gauge transformations i→s ij i and Ji 1••• i p

→Ji 1••• i p
j i 1

•••j i p
to Eq. ~13!, and arrive at an equivalen

p-spin model with a ferromagnetic bias, where

P~Ji 1••• i p
!5S Np21

pJ2p!
D 1/2

expF2
Np21

J2p!

3S Ji 1••• i p
2

p!

Np21
j 0D 2G . ~14!

The Nishimori point for this model is located atb52 j 0 /J2.
The infinite-range model is exactly solvable using me

field theoretical techniques for disordered systems such
the replica or cavity method@11#. Here we use the cavity
method because of its more transparent physical interpr
tion, and some obstacles encountered in the use of the re
method.

The cavity method uses a self-consistency argumen
consider what happens when a spin is added or remo
from the system. The central quantity in this method is
cavity field, which is the local field of a spin when it is adde
to the system, assuming that the exchange couplings act
one way from the system to the new spin~but not from the
spin back to the system!. Since the exchange couplings fee
ing the new spin have no correlations with the system,
cavity field becomes a Gaussian variable in the limit of la
valency.

A. Average spin in the first stage

We start with the so-called ‘‘clustering property’’ fo
mean-field systems@11#,

^s i 1
•••s i p

&5^s i 1
&•••^s i p

&, ~15!

where^ & represents thermodynamic averages. As show
Appendix A, the clustering property enables us to expr
the thermal averages of a spin in terms of the cavity fie
say, for spin 1,

^s1&5tanhbh1 ,

h15 (
1, j 2,•••, j p

J1 j 2••• j p
^s j 2

&\1
•••^s j p

&\1, ~16!

where the superscript\1 denotes the thermal averages fo
Hamiltonian in whichs1 and the associated exchange int
actions are absent, but otherwise identical to Eq.~13!. Thus
h1 is the cavity field obeying a Gaussian distribution, who
mean and variance arep j0mp21 andpJ2qp21/2 respectively,
wherem andq are the magnetization and Edwards-Anders
order parameter, respectively, given by

m[
1

N (
i

^s i& and q[
1

N (
i

^s i&
2. ~17!

It is convenient to write

bhi5m̂1Aq̂ui , ~18!
,
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where

m̂5pb j 0mp21 and q̂5
p

2
b2J2qp21, ~19!

andui is a Gaussian variable with mean 0 and variance

B. Order parameters in the first stage

Self-consistently, applying the cavity argument to
terms in Eq.~17!, we can obtain self-consistent equations f
m andq:

m5E Du tanhG, ~20!

q5E Du tanh2G, ~21!

whereDu[due2u2/2/A2p is the Gaussian measure andG

5m̂1Aq̂u. The overlap for the one-stage decoding proc
is given by

M[
1

N (
i

sgn̂ s i&5erf
m̂

A2q̂
. ~22!

Now we consider selective freezing. If we introduce a free
ing thresholdu so that all spins witĥ s i&

2.u2 are frozen,
then the freezing fractionf is given by

f [
1

N (
i

Q~^s i&
22u2!512

1

2
erf

u1

A2
1

1

2
erf

u2

A2
,

~23!

whereu65(6u02m̂)/Aq̂ with tanhu05u.

C. Average spin in the second stage

Assuming that the spins̃1 is dynamic in the second stage
we can write

H$s̃%'H$s̃%\12b̃ (
1, j 1•••, j p21

s̃1J1 j 1••• j p21)s51

p21

@s̃ j s
Q

3~u22^s j s
&2!1sgn̂ s j s

&Q~^s j s
&22u2!#, ~24!

whereH$s̃%\1 is the Hamiltonian when spin 1 is complete
removed from the system in both stages of the thermo
namic process. Removing spin 1 may cause the thermal
erages of other spins to adjust slightly in the first sta
Hence some dynamic spins~with ^sk&

2,u2) may become
frozen ones~with ^sk&

2.u2), and vice versa, so that, strictl
speaking, further terms should be considered in Eq.~24! to
account for these secondary effects. For example, if spink is
induced to switch from dynamic to frozen~or vice versa! on
removal of spin 1, then the Taylor expansion ofH$s̃% im-
plies that an extra term
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2b̃~sgn̂ sk&
\12s̃k!@d~^sk&

\12u!2d~^sk&
\11u!#~^sk&

2^sk&
\1! (

1, j 1•••, j p21Þk
Jk j1••• j p21)s51

p21

$s̃ j s
Q

3@u22~^s j s
&\1!2#1sgn̂ s j s

&\1Q@~^s j s
&\1!22u2#%

~25!

should be incorporated into Eq.~24!. Here we have neglecte
these terms for clarity. Nevertheless, justificationa posteriori
can be provided for their deletion.

Using a cavity argument similar to Appendix A, we ca
show that

^s̃1&5tanhb̃H (
1, j 1•••, j p21

J1 j 1••• j p21)s51

p21

@^s̃ j s
&\1

3Q~u22^s j s
&2!1sgn̂ s j s

&\1Q~^s j s
&22u2!#J .

~26!

However, the effective field on the right hand side of E
~26! is still not a cavity field becausês j s

&, which is used in

the step functions to decide whether the spinj s is dynamic or
frozen in the second stage, is different from^s j s

&\1. Hence it

may have correlations with spin 1. Taylor expansion of^s j s
&

about^s j s
&\1 yields

^s̃1&5tanhb̃H h̃11 (
1 j Þ j 1•••, j p22

J1 j j 1••• j p22

3 )
s51

p22

†^s̃ j s
&\1Q@u22~^s j s

&\1!2#1sgn̂ s j s
&\1Q

3@~^s j s
&\1!22u2#‡@sgn̂ s j&

\12^s̃ j&
\1#@d~^s j&

\1

2u!2d~^s j&
\11u!#~^s j&2^s j&

\1!J , ~27!

whereh̃1 is the generic cavity field which is now complete
uncorrelated with spin 1. It is given by

h̃15 (
1, j 1•••, j p21

J1 j 1••• j p21)s51

p21

$^s̃ j s
&\1Q@u22~^s j s

&\1!2#

1sgn̂ s j s
&\1Q@~^s j s

&\1!22u2#%. ~28!

To evaluate the differencês j&2^s j&
\1 appearing in Eq.

~27!, we have to apply the cavity method a second time,
comparing the changes when both spins 1 andj are removed.
This is done in Appendix B, and the result is

^s j&2^s j&
\15~b sech2bhj

\1!~hj 1tanhbh1
\ j !, ~29!

where
.

y

h1 j5hj 15 (
1 j Þk1•••,kp22

J1 jk1•••kp22
^sk1

&\1 j
•••^skp22

&\1 j .

~30!

When Eqs.~29!–~30! are substituted into Eq.~27!, the sig-
nificant contribution comes from the terms which pair
J1 j j 1••• j p22

andJ1 jk1•••kp22
. The various terms appearing i

the summation overj Þ j 1,•••, j p22 involve thermal aver-
ages in the absence of spins 1 orj. We assume that the
effects of removing a spin is negligible~which can be shown
to be equivalent to the replica symmetric approximation
the replica method@12#!. Then, replacing the components
the terms by their mean values, and counting thatNp22/(p
22)! terms appearing in the summation overj 1,•••

, j p22, we arrive at

^s̃1&5tanhb̃H h̃11
p

2
~p21!J2

1

N (
j

@d~^s j&2u!2d~^s j&

1u!#@sgn̂ s j&2^s̃ j&#~bsech2bhj !~r p22tanhbh1!J ,

~31!

where r is the order parameter describing the spin corre
tions of the two thermodynamic stages:

r[
1

N (
i

^s i&$^s̃ i&Q@u22^s i&
2#1sgn̂ s i&Q@^s i&

22u2#%.

~32!

Equation ~31! can be simplified by introducing the trans
susceptibilityx tr , which describes the response of a spin
the second stage to variations of the cavity field in the fi
stage, namely,

x tr[
1

N (
i

]^s̃ i&
]hi

. ~33!

Since^s̃ i& equals sgnhi for tanh2bhi.u2, and tanhbh̃i other-
wise, we obtain

x tr5
1

N (
i

@d~^s i&2u!2d~^s i&1u!#@sgn̂ s i&

2^s̃ i&#b sech2bhi . ~34!

Equation~31! can thus be simplified to

^s̃1&5tanhb̃H h̃11
p

2
~p21!J2r p22x tr tanhbh1J .

~35!

D. Order parameters in the second stage

The cavity fieldh̃1 in the second stage is a Gaussian va
able. Its mean and variance arep j0m̃p21 and pJ2q̃p21/2,
respectively, wherem̃ and q̃ are the magnetization an
Edwards-Anderson order parameter, respectively, given
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m̃[
1

N (
i

@Q~u22^s i&
2!^s̃ i&1Q~^s i&

22u2!sgn̂ s i&#,

~36!

q̃[
1

N (
i

@Q~u22^s i&
2!^s̃ i&

21Q~^s i&
22u2!#. ~37!

Furthermore, the covariance betweenh1 and h̃1 is
pJ2r p21/2, wherer is given in Eq.~32!.

Algebraic manipulations can be simplified if we write, fo
i 51,

bhi5m̂1Aq̂ui , ~38!

b̃h̃i5m̂̃1Aq̂̃~hui1A12h2v i !, ~39!

where ui and v i are independent Gaussian variables w
mean 0 and variance 1,m̂ and q̂ are given in Eq.~19!, and

m̂̃5pb̃ j 0m̃p21 and q̂̃5
p

2
b̃2J2q̃p21, ~40!

r̂ 5
p

2
bb̃J2r p21 and h5

r̂

Aq̂q̂̃

. ~41!

Self-consistently applying the same cavity argument to
terms in Eqs.~36!, ~37!, ~32!, and ~34!, and performing the
Gaussian average overui andv i , we arrive at the following
self-consistent equations form̃, q̃, r andx tr :

m̃52
1

2
erf

u1

A2
2

1

2
erf

u2

A2
1E

u2

u1

DuE Dv tanhL,

~42!

q̃512
1

2
erf

u1

A2
1

1

2
erf

u2

A2
1E

u2

u1

DuE Dv tanh2L,

~43!

r 5S E
2`

u2

1E
u1

` DDuutanhGu1E
u2

u1

DuE Dv tanhG tanhL,

~44!

x tr5
exp~2u1

2 /2!

JAppqp21 E Dv~12tanhLv
(1)!

1
exp~2u2

2 /2!

JAppqp21 E Dv~11tanhLv
(2)!, ~45!

where

L5m̂̃1Aq̂̃~hu1A12h2v !1
p

2
~p21!b̃J2r p22x tr tanhG,

~46!

Lv
(6)5m̂̃1Aq̂̃~hu61A12h2v !6

p

2
~p21!b̃J2r p22x tru.

~47!
ll

Eqs.~20!, ~21! and ~42!–~45! for the order parametersm, q,
m̃, q̃, r, andx tr form a close set of equations. The perfo
mance of selective freezing is measured by

M sf[
1

N (
i

@Q~u22^s i&
2!sgn̂ s̃ i&1Q~^s i&

2

2u2!sgn̂ s i&#. ~48!

From the above parameters,M sf can be derived as

M sf52
1

2
erf

u1

A2
2

1

2
erf

u2

A2
1E

u2

u1

Du erf
Lu

A2q̃~12h2!
,

~49!

whereLu5m̂̃1Aq̂̃hu1@p(p21)/2#b̃J2r p22x tr tanhG.
We have also tried to derive the above equations using

replica method. However, in the nearest results that we co
find, terms involving the trans-susceptibility are abse
which we believe to be unphysical. Therefore, the repl
approach to the order parameter equations remain an o
question.

We show an example of the casep52 and j 05J51 in
Fig. 1, where the overlapM sf is plotted as a function of the
decoding temperatureT(5b215b̃21) for various given val-
ues of freezing fractionf. When f 50 ~no spins frozen! and
f 51 ~all spins frozen!, the dynamics is equivalent to on
with single stage, and the overlap reaches its maximum a
Nishimori pointT5J2/2j 0, as expected. We observe that t
tolerance against variations inT is enhanced by selectiv
freezing for certain values off.

It is therefore interesting to consider the appropriate v
ues off for the best overlap at a given decoding temperatu
Figures 2~a!–2~f! show that at high temperatures such as
Figs. 2~a!–2~c!, there is a single maximum and its position
fairly independent of temperature, lying aroundf 50.9 in the
present case. At intermediate temperatures such as in
2~d!–2~e!, there appear two maxima and as temperat

FIG. 1. The overlapM sf as a function of the decoding temper
ture T for p52 and j 05J51 for various given values of freezing
fraction f. In this and the following figures,f 50 corresponds to
one-stage decoding/restoration.
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changes, there is a discontinuous jump in the maximum
sition. Figure 2~f! shows that when the temperature is low
than the Nishimori point (TN50.5), the overlap cannot b
improved by selective freezing.

Figure 3 compares the overlap of the one-stage dynam
with that of the best of selective freezing. It shows that wh
the decoding temperature is misdetermined to be higher
its optimal value at the Nishimori point, selective freezi
can provide a fairly robust performance. Furthermore,
choice of the freezing fraction for such robust performan
appears to be quite independent of the temperature. The
line in Fig. 4 locates the position for the best overlap and
observed from Figs. 2~a!–2~f!, lies in the vicinity of f '0.9
for a large range of temperature. The unshaded region in
same figure also indicates that selective freezing leads t
improvement in the overlap over a wide range of the para
eter space.

We have also studied the dependence of the overlap
varying the freezing thresholdu rather than the freezing frac
tion f. However, Fig. 5 shows that the optimal value ofu has
a much larger dependence on the temperature. This is du

FIG. 2. The overlapM sf as a function of the freezing fractionf
at temperaturesT5 ~a! 1.5, ~b! 1.2, ~c! 1.0, ~d! 0.8, ~e! 0.6, and~f!
0.4 for p52 and j 05J51.

FIG. 3. The temperature dependence of the best overlap o
lective freezing compared with the overlap of the one-stage dyn
ics for p52 and j 05J51.
o-
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the sensitive dependence of the thermal averages of the s
on temperature. At high temperatures, most spins are t
mally agitated, and the freezing threshold has to be set
very low value in order to freeze a given fraction of spin
On the other hand, at low temperatures, most spins are
tively stable, and the freezing threshold has to be set t
very high value in order to keep a given fraction of spi
dynamic in the second stage. We conclude that the free
fraction is a better controlling parameter for the decod
performance.

The advantages of selective freezing are confirmed
Monte Carlo simulations shown in Fig. 6. For one-stage
namics, the overlap is maximum at the Nishimori po
(TN50.5), as expected. However, it deterriorates rather r
idly when the decoding temperature increases. In contr
selective freezing maintains a more steady performance
pecially whenf 50.9.

IV. MEAN-FIELD MODEL FOR IMAGE RESTORATION

In conventional image restoration problems, a given
graded image consists of the set of pixels$t i%, but not the set

e-
-

FIG. 4. The freezing fractionf for the best overlap as a functio
of temperatureT for p52 and j 05J51. In this and the following
figure, the solid line is the global maximum, the dashed line is
local maximum, and the shaded region hasM sf,M .

FIG. 5. The freezing thresholdu for the best overlap as a func
tion of temperatureT for p52 and j 05J51.
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of exchange interactions$Ji 1 ,•••,i p
%. On the other hand, ef

fective restoration requires the introduction of a model pr
distribution of the pixels for smooth images. In this case
Hamiltonian corresponds to that of a random field Isi
model:

H$s%52h(
i

t is i2
bm

z (̂
i j &

s is j . ~50!

In mean-field systems, each pixeli has an extensive valency
The pixelst i are the degraded versions of the source pix
j i , corrupted by noise which, for convenience, is assume
be Gaussian with meanaj i and variancet2, i.e.,

P~t i uj i !5

expF2
1

2t2 ~t i2aj i !
2G

A2pt2
. ~51!

In turn, the source pixels satisfy the prior distribution in E
~1!. Applying the cavity argument for mean-field system
the prior distribution becomes factorizable,

P~j i !5
exp~bsm0j i !

2 coshbsm0
, ~52!

wherem05tanhbsm0. The order parameter in the first stag
is given by

m[
1

N (
i

^s i&

5
1

2 coshbsm0
(

j561
exp~bsm0j!E Dx tanhU,

~53!

whereU5bmm1haj1htx. The overlap for the one-stag
restoration process is given by

FIG. 6. Results of Monte Carlo simulations for the overlaps
selective freezing compared with those of the one-stage dyna
for p52 and j 05J51, corresponding to Fig. 1. The simulatio
parameters areN51000, with an initial overlap of 0.9 and 20
samples. Each stage consists of 500 Monte Carlo steps per nod
equilibration, and 1000 Monte Carlo steps per node for averag
r
e

ls
to

.
,

M[
1

N (
i

j isgn̂ s i&

5
1

2 coshbsm0
(

j561
exp~bsm0j!j erf

bmm1haj

A2ht
.

~54!

Next we consider selective freezing in the second stage w
a freezing thresholdu. The freezing fraction is given by

f [
1

N (
i

Q~^s i&
22u2!5

1

2 coshbsm0
(

j561
exp~bsm0j!

3F12
1

2
erf

u1~j!

A2
1

1

2
erf

u2~j!

A2
G , ~55!

whereu6(j)5(6u02bmm2haj)/ht, with tanhu05u. The
order parameter of the second stage is given by

m̃[
1

N (
i

@Q~u22^s i&
2!^s̃ i&1Q~^s i&

22u2!sgn̂ s i&#

5
1

2 coshbsm0
(

j561
exp~bsm0j!F2

1

2
erf

u1~j!

A2

2
1

2
erf

u2~j!

A2
1E

u2(j)

u1(j)

Dx tanhLG , ~56!

whereL5bmm̃1haj1htx. The overlap for selective freez
ing is given by

M sf[
1

N (
i

j i@Q~u22^s i&
2!sgn̂ s̃ i&

1Q~^s i&
22u2!sgn̂ s i&#

5
1

2 coshbsm0
(

j561
exp~bsm0j!j erf

g~bmm̃!1haj

A2ht
,

~57!

where

g~bmm̃!5H bmm2u0 , bmm̃,bmm2u0

bmm̃, bmm2u0,bmm̃,bmm1u0

bmm1u0 , bmm̃.bmm1u0 .
~58!

We note that since the spin-glass interaction is absent in
case, there are no trans-susceptibility effects. This is un
the case of error-correcting codes, in whichx tr is nonzero
whenJ is nonzero.

The three cases of the functiong(bmm̃) in Eq. ~58! cor-
respond to three situations. Whenbmm̃,bmm2u0, all the
dynamic spins in the second stage have negative therm
namic averages, and therefore take the value21 in the two-
stage restoration process. This is equivalent to a one-s
restoration process in which all spins with thermodynam

f
ics

for
g.
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averages above the threshold1u are frozen to11, and to
21 otherwise. Similarly, whenbmm̃.bmm1u0, all the dy-
namic spins in the second stage have positive thermo
namic averages. Only whenbmm2u0,bmm̃,bmm1u0 do
we have the dynamic spins frozen to partly11 and partly
21.

We can consider the condition for the optimal perfo
manceM sf of selective freezing. For a given distribution o
data and noise,g(bmm̃) is the only adjustable parameter
Eq. ~57!, playing the same role as the adjustable param
bmm for one-stage dynamics in Eq.~54!. In the space ofh
and bm , the performance is optimal along the lineh/bt
5bmm/bsm0 for one-stage dynamics@5# (bt5a/t2 for
Gaussian noise!. Analogously, there exists a line of optim
performance defined byh/bt5g(bmm̃)/bsm0 for selective
freezing.

An example of the lines of optimal performance is sho
in Fig. 7. It is interesting to note the kinks for certain free
ing fractions. They correspond to transitions of cases
which the dynamic spins are partially or completely frozen
61.

A comparison of Eqs.~54! and ~57! shows that selective
freezing performs as well as one-stage dynamics, but ca
outperform it. Nevertheless, selective freezing provide
rather stable performance when the hyperparameters ca
be estimated precisely. In image restoration, the usual p
tice is to choose a fixed ratio ofbm /h. Figure 8 confirms this
stability along the line of operation withbm /h set to the
optimal ratio bs /bt . Note especially that the lines withf
50.7 and 0.9 attain a nearly optimal value ofM sf over a
wide range of parameters. The kink atf 50.9 is, again, due
to the appearance of the21 frozen dynamic spins~to the
right of the kink!.

The stable performance of selective freezing can be pa
explained by the proximity of the lines of optimal perfo

FIG. 7. The lines of optimal performance in the space of
random-field strengthh and the restoration temperatureTm[bm

21 in
the mean-field model of image restoration fora5t51 and bs

51.05. The dotted line is the line of operation withbm /h set to the
optimal ratiobs /bt51.05. At f 50.9 the dynamic spins are com
pletely frozen to11 to the left of the kink, but only partially so to
the right.
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mance with the line of operation which, as discussed in R
@5#, is an important factor in hyperparameter estimation. T
is illustrated by the optimal lines for small values off near
the Nishimori point (Tm ,h)5(1.0521,1) in Fig. 7.

However, the advantage of selective freezing does
only rely on the fortuitous combination of parameters. Ev
when the parameters are not chosen optimally, selec
freezing still maintains a rather robust performance. For
ample, along the line of optimal performance forf 50.9 in
Fig. 7, the bending at the kink only causes a modest red
tion in the overlapM sf in Fig. 8.

To study the robustness of the performance of selec
freezing, we model a situation common in modern comm
nication channels carrying multimedia traffic, which are o
ten bursty in nature. Since ‘‘burstiness’’ results in interm
tent interferences, we consider a noise with two Gauss
components, each with its own characteristics. A rand
fraction f 1 of the pixels are influenced by Gaussian no
with signal strengtha1 and noise variancet1

2. The rest of the
pixels have strengtha2 and noise variancet2

2. Hence the
distribution of the degraded pixels are

P~t i uj i !5 f 1

expF2
1

2t1
2 ~t i2a1j i !

2G
A2pt1

2

1 f 2

expF2
1

2t2
2 ~t i2a2j i !

2G
A2pt2

2
, ~59!

wheref 2512 f 1. The equations for the order parameters c
be generalized from the single component case in a strai
forward manner.

A case of interest is that the restoration agent operate
the assumption of the characteristics of the majority com
nent of the channel, say the first component. Hence it op
ates at the ratiobm /h5bst1

2/a1. Suppose the Gaussian nois
is partly interrupted to take the characteristics of the sec
component, but the operation parameters cannot be adju

e
FIG. 8. The performance of selective freezing ata5t51 and

bs51.05, withbm /h set to the optimal ratiobs /bt51.05 for vari-
ous freezing fractionsf.
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soon enough; then there will be a degradation of the qua
of the restored images. In the example in Fig. 9, the red
tion of the overlapM sf for selective freezing is much mor
modest than the one-stage process (f 50).

An alternative situation is that the restoration agent is a
to detect the changes in the average signal strengths
noise variance, but still operates on the assumption o
single-component Gaussian channel. Suppose that
simple statistics aŝsgnt i&, ^t i& and ^t i

2& are accessible
Then the parametersm0* , a* , andt* estimated by the res
toration agent are obtained, fort15t25t, from the solutions
of

m0* erf
a*

A2t*
5^sgnt i&5m0F f 1erf

a1

A2t1

1 f 2erf
a2

A2t2
G ,

~60!

m0* a* 5^t i&5m0@ f 1a11 f 2a2#, ~61!

a* 21t* 25^t i
2&5 f 1~a1

21t1
2!1 f 2~a2

21t2
2!, ~62!

and bs* 5tanh21m0* /m0* . Using these estimated paramete
the performances in Fig. 10 improve over their counterpa
based on only the majority component in Fig. 9. Still, on
stage restoration cannot avoid the performance drop whh
vanishes, whereas correspondingly, selective freezing h
much more gentle drop in performance.

It is interesting to study the more realistic case of tw
dimensional images, since we have so far presented ana
cal results for the mean-field model only. As confirmed
the results for Monte Carlo simulations in Fig. 11, the ov
laps of selective freezing are much more steadier than tha
the one-stage dynamics when the decoding tempera
changes. This steadiness is most remarkable for a free
fraction of f 50.9.

FIG. 9. The performance of selective freezing with two comp
nents of Gaussian noise atbs51.05, f 154 f 250.8, a155a251,
andt15t251. The restoration agent operates by assuming the
jority component, i.e.,bm /h5bst1

2/a1.
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V. DISCUSSION

We have introduced a multistage technique for err
correcting codes and image restoration, in which the inf
mation extracted from the former stage can be used se
tively to improve the performance of the latter one. Wh
the overlapM sf of the selective freezing is bounded by th
optimal performance of the one-stage dynamics derived
Ref. @5#, it has the advantage of being tolerant to uncerta
ties in hyperparameter estimation. The performance is e
cially steady when the fraction of frozen spins, rather th
the threshold of their thermodynamic averages, is fixed in
process. This is confirmed by both analytical and simu
tional results for mean-field and finite-dimensional mode
As an example, we have illustrated its advantage of rob
ness when the noise distribution is composed of m
than one Gaussian components, such as in the cas

-

a-

FIG. 10. Same as Fig. 9, except that the restoration agent o
ates with the ratiobm /h5bs* t* 2/a* , wherebs* , t* , anda* are
estimated from Eqs.~60!–~62!.

FIG. 11. Results of Monte Carlo simulations for the overlaps
selective freezing compared with those of the one-stage dyna
for two-dimensional images generated at the source prior temp
ture Ts52.15. The simulation parameters areN550350, with an
initial overlap of 0.8 and 1000 samples. Each stage consist of 1
Monte Carlo steps per node for averaging.
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modern communication channels supporting multime
applications.

We found that selective freezing is most useful wh
more than one hyperparameters have to be estimated,
lustrated by the example of image restoration, where bothbm

and h have to be estimated. In the example of err
correcting codes discussed in Sec. III, there is only one
perparameterTm , and it is found that selective freezing ha
performance advantages only whenTm is chosen above the
Nishimori point. However, more than one hyperparamete
often present in practical applications.

Selective freezing can be generalized to more than
stages, in which spins that remain relatively stable in o
stage are progressively frozen in the following one. It is e
pected that the performance can be even more robust.

While the multistage process described here has a ro
performance, it does not raise the critical temperature or
critical noise level for the existence of the ordered pha
Nor can it widen the basin of attraction for the ordered pha
Other multistage processes, proposed in Ref.@10# for neural
networks, may be able to achieve this. This remains an
for further research.

We have made progress in the theoretical treatmen
multistage processes using the cavity method. It allows
thermal averages of spins to be expressed in terms of
cavity fields. Since a cavity field is uncorrelated with the sp
in consideration, it can in turn be expressed in terms of
means and covariances of the spin averages, thereby arr
at a set of self-consistent equations for the order parame
In particular, there appears a trans-susceptibility term, s
variations of the cavity field in the first stage are correla
with the spin average in the second stage due to the sele
nature of the freezing process in the second stage. Howe
for the ordered phase considered in this paper, the effec
the trans-susceptibility term is not too large except near
phase boundary.

On the other hand, we have a remark about the b
assumption of the cavity method, namely, that the addition
removal of a spin causes a small change in the system
scribable by a perturbative approach. In fact, adding or
moving a spin may cause the thermal averages of other s
to change from below to above the thresholds6u ~or vice
versa!. This change, though often small, induces a no
negligible change of the thermal averages from fractio
values to the frozen values of61 ~or vice versa! in the
second stage. The perturbative analysis of these chang
only approximate. The situation is reminiscent of similar
stabilities in other disordered systems such as the percep
and are equivalent to Almeida-Thouless instabilities in
replica method@13#. A full treatment of the problem would
require the introduction of a rough energy landscape@13#, or
the replica symmetry breaking ansatz in the replica met
@11#. Nevertheless, previous experiences on disordered
tems showed that the corrections made by a more comp
treatment may not be too large in the ordered phase.
example, corresponding analytical and simulational result
Figs. 1 and 6, respectively, are close to each other.

In practical implementations of error-correcting codes,
gorithms based on belief-propagation methods, rather t
Monte Carlo methods, are often employed@14#. It has re-
cently been shown that such decoded messages conver
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the solutions of the TAP equations in the corresponding th
modynamic system@15#. Again, the performance of thes
algorithms are sensitive to the estimation of hyperpara
eters. We propose that the selective freezing procedure
the potential to make these algorithms more robust.

Incidentally, multistage dynamics has also been applie
the recently popular turbo codes@16#. Messages are coded i
sequences with two possible permutations and at each i
tive stage, the information derived from decoding one
quence is fed to the other in the form of external fields
each bit. The techniques developed in the present contex
be used to study this iterative process.
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APPENDIX A: THERMAL AVERAGES OF SPINS

In this appendix we derive Eq.~16! starting from the clus-
tering property Eq.~15!. For convenience we illustrate th
derivation forp52. We separate the Hamiltonian into tw
parts, one does not contains1 and the other does. Hence

H5H\12b(
j .1

J1 js1s j . ~A1!

Thus the thermal average can be written as

^s1&5

Tr\1e2H\1
Tr1s1 expS bs1(

j
J1 js j D Y Tr\1e2H\1

Tr\1e2H\1
Tr1 expS bs1(

j
J1 js j D Y Tr\1e2H\1

.

~A2!

Expanding the exponential function in the denominator a
tracing overs, we obtain

Den.52 (
n even

bn

n! (
j 1••• j n

J1 j 1
•••J1 j n

^s j 1
•••s j n

&\1.

~A3!

Next, we use the clustering property to factorize the therm
averagê s j 1

•••s j n
&\1. For the coupling distribution speci

fied by Eq.~14!, only two kinds of contributions are signifi
cant in the summation over the indicesj 1••• j n . In the first
kind, an indexj remains distinct from the rest, contributing
factor of J1 j^s j&

\1. In the second kind, two indices becom
paired up. However, whenj andk pair up, the thermal aver
age ^s jsk&

\1 becomes 1 instead of (^s j&
\1)2. Hence the

additional contribution due to the pairing isJ1 j
2 @1

2(^s j&
\1)2#. Other than these, the contributions due to t

pairing of three or more indices are smaller by factors ofN.
The denominator can now be considered as a summa

over n and m, which are respectively the total number
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indices and the number of pairs of paired indices appea
in a term. The number of such terms isn!/m!2m(n22m)!.
Hence

Den.52 (
n even

(
m50

n/2
bn

n!

n!

m!2m~n22m!!

3F(
j

J1 j^s j&
\1Gn22mH(

j
J1 j

2 @12~^s j&
\1!2#J m

,

~A4!

which can be simplified to

Den.52 expH 1

2
b2(

j
J1 j

2 @12~^s j&
\1!2#J

3coshH b(
j

J1 j^s j&
\1J . ~A5!

Similarly, the numerator can be written as

Num.52 expH 1

2
b2(

j
J1 j

2 @12~^s j&
\1!2#J

3sinhH b(
j

J1 j^s j&
\1J . ~A6!

Substituting Eqs.~A5! and ~A6! into Eq. ~A2!, we arrive at
Eq. ~16!.

APPENDIX B: CHANGE IN THERMAL AVERAGES
ON REMOVAL OF A SPIN

In this appendix we derive Eq.~29!. For convenience we
illustrate the derivation forp52. We separate the Hamil
tonian into four parts:~a! does not contain spins 1 andj, ~b!
contains only spins 1 andj, ~c! contains spin 1 but notj, and
~d! contains spinj but not 1. This yields

H5H\1 j2bJ1 js1s j2b (
kÞ1 j

Jk1sks12b (
kÞ1 j

Jk jsks j .

~B1!
c

ss
gThe thermal average ofs j can then be written as

^s j&5
Tr1 jTr\1 je2Hs j /Tr\1 je2H\1 j

Tr1 jTr\1 je2H/Tr\1 je2H\1 j . ~B2!

Using the mean-field technique developed in Appendix
the denominator can be written as

Den.5Tr1 j expH bJ1 js1s j1b (
kÞ1 j

^sk&
\1 j~Jk1s11Jk js j !

1
1

2
b2 (

kÞ1 j
@12~^sk&

\1 j !2#

3~Jk1s11Jk js j !
2J . ~B3!

After collecting terms and discarding negligible ones,

Den.5Tr1 j expH bs1 (
kÞ1 j

J1k^sk&
\1 j1bs j (

kÞ1 j
Jjk^sk&

\1 j

1bJ1 js1s j

1b2~12q!J2J . ~B4!

Together with a similar manipulation of the numerator, w
obtain

^s j&5tanhb~hj
\11Jj 1tanhbh1

\ j !, ~B5!

whose Taylor expansion yields

^s j&5^s j&
\11~b sech2bhj

\1!~Jj 1tanhbh1
\ j !, ~B6!

which becomes Eq.~29! for the casep52.
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